Allele Registry

API specification

version 0.09.01

Table of Contents
INEFOAUCHION. ocueeeeineiniceiceisuecnisensuissaisesssessstsssssessstssssstssssssssssessstssssssssssssssssssssstsssssssssssssssssssssssssssasss 2
SeNAING HTTP TEQUESES. ...ccouveeeieeieeiteeteeiteet ettt et e et e e bt e st e e bt e sateesbeesateeubeessteeabeessteeabeessteessnseeennns 2
BaaSH... ettt ettt sh e a e et a e bt et s at e s beeebeeebeeeas 2
RUDY ettt ettt s e e bt e st e e bt e st e e bt e s e bt e e s eabeee s abaeeennes 3
41310 o U U PRSPPI 3
AUTNENTICALION. ...eeiteitieeie ettt ettt e bt et e et e e st e e s bt e s at e e bt e satesabeessteeabeessbeeesabbeeenabaeeenses 4
EITOT TESPOMSES.eeeiiiiieeteeiitee ettt ettt ettt e e ettt e e e sttt e e s e st e e e esasstee e s ssaeeesanasaeeessassaeessnssssanaeeeeeeens 4
Parameter set in HTTP REAdET........ccouiiiiiiiieieeeee ettt sttt s e 5
Objects exposed DY this APL.........cciiuiiniinneicneinsnissssisssiosssssssssssssssssossssssasssssssssssssssssasssssssssssssasssssssssss 6
CanONICAl ALLELE........ooeiiiee ettt ettt et s bt e bt e st e s bt e s ab e e bt e e sanbeeesnnneenans 6
ReEferenCe SEQUEIICE.eiiiiiiieieeeeeeee ettt ettt st e et e st e e saeessbeesaeesssbaeessssaessssseesnssees 10
GBI ..ttt b e e e et e e e e bt e s e bt e e e e bt e e e et a e e e e e n bt e e e e e bba e e s e nrbaeeeenraee 12
Query or register an allele using HGVS eXPression...........ccoeiineiessesssancsses 13
Query canonical allele by HGV'S @XPIreSSiOn........ccceerieiiieiiieriieinieeitenteeiee sttt e e 13
Bulk query of alleles with file containing HGV'S eXPressions............cceecueereercieeneensieeneensvessnesseeennns 13
Bulk query of alleles With VCF file.........ccuiiiiiiiiiiieieeecteeeeeee ettt e e 13
REGIStEr @ NEW AIIRIE.......eiiuiiiiieieeeeee ettt ettt e st e e aa e ssbeesaaessbeesseesnseensseesseens 14
QUBTIES. ... vveeeeeeeeeeececrssssssaneeeeecessssssssssseseessssssssasssssesssssssssssssssssesssssssssassssssesssssssssssssssssssssssssssssssssssssssannnnes 15
Query objects by their NAMES..........c.coviiriiiiieeceeet et e e e e s e e e snnes 15
Query canonical alleles by reference sequence 10CUS..........ccoecvereerieriieniereeieneereeree e 16
Query canonical alleles DY ENES.........cccuieiiiiiiriiiiiieriieeeeeee ettt te et s e e e s te e e s abee e nnns 17

Query canonical alleles by identifiers from external recOrds..........cceceeverevereereriieneeeriereeeeee e 17

Introduction

Allele Registry provides URIs for canonical alleles defined at the level of nucleic acid sequences
(genomic and transcript alleles) or at the protein level (amino acid sequences). Different labels and
definitions of the same allele are always represented by the same URI. Canonical allele embraces
various names of the same allele and its definitions in the context of different reference sequences (both
assemblies and transcripts). Nucleic acid and amino acid canonical alleles are defined in separate
spaces and never share the same URI.

This document describes API for Allele Registry that allows querying as well as registering alleles and
obtaining their URI in real time. The API is based on HTTP protocol and always returns data in JSON
format. New fields may be added in the future, so developers using this API should assume that all
structures may contain additional fields not described in this document.

Allele Registry is identified on the Internet by DNS name. This address will be denoted in this
document by {ServerName}. Official instance of Allele Registry is currently available at the address
http://reg.genome.network and http://reg.clinicalgenome.org. There is also test server available at the

location http://reg.test.genome.network.

Sending HTTP requests

The Allele Registry API is based on HTTP requests. There are three types of HTTP requests used by
this API: GET, POST and PUT. All HTTP GET requests can be send with the use of any Internet
browser (just copy the URL to the address bar), but for sending POST and PUT requests some more
advanced tool is needed. Moreover, all PUT requests requires authentication, what is described in the
next section. Below you can find examples how to send all these three types of requests from bash
console and from chosen programming languages.

Bash

These sections contain sequence of commands which may be run from bash console (by copy & paste).
They require some additional tools like curl or shalsum and depend on standard tools like echo, cut
etc.. Different behavior of these dependencies may perturb some examples. However provided code
snippets should work on the majority of modern Linux distributions.

send GET request with parameter
URL="http://reg.test.genome.network/allele?hgvs=NC_000010.11:g.87894077C>T"
URL=${URL//>/%3E} # convert symbol > to special code %3E

curl -X GET "${URL}"

send POST requests with parameter and payload taken from the file alleles.txt
URL="http://reg.test.genome.network/alleles?file=hgvs"
curl -X POST "${URL}" --data-binary @alleles.txt

calculate authentication parameters and send PUT request

you have to set LOGIN and PASSWORD here
URL="http://reg.test.genome.network/allele?hgvs=NC_000010.11:9g.87894077del"
IDENTITY="echo -n "${LOGIN}${PASSWORD}" | shaisum | cut -d \ -f 1°
TIME="date +%s | tr -d "\n"°

TOKEN="echo -n "${URL}${IDENTITY}${TIME}" | shalsum | cut -d \ -f 1°
REQUEST="${URL}&gbLogin=${LOGIN}&gbTime=${TIME}&gbToken=${TOKEN}"

curl -X PUT "${REQUEST}"

http://reg.test.genome.network/
http://reg.clinicalgenome.org/
http://reg.genome.network/
http://reg.genome.network/
http://reg.genome.network/

Ruby
All included ruby code snippets should work with ruby version >= 1.8.7.

require 'net/http’'
require 'digest/shail'

send GET request with parameter

url = 'http://reg.test.genome.network/allele?hgvs=NC_000010.11:9.87894077C>T"'
url URI.escape(url) # convert symbol > to special code %3E

http = Net::HTTP.new(URI(url).host)

req Net::HTTP::Get.new(url)

res http.request(req)

print res.body

send POST requests with parameter and payload taken from the file alleles.txt
url = 'http://reg.test.genome.network/alleles?file=hgvs'

http = Net::HTTP.new(URI(url).host)

req = Net::HTTP::Post.new(url)

req.body = File.open('alleles.txt').read

res = http.request(req)

print res.body

calculate authentication parameters and send PUT request

you have to set login and password here

url = 'http://reg.test.genome.network/allele?hgvs=NC_000010.11:g.87894077del'
identity = Digest::SHA1l.hexdigest("#{login}#{password}")

gbTime = Time.now.to_i.to_s

token = Digest::SHA1l.hexdigest("#{url}#{identity}#{gbTime}")

request = "#{url}&gbLogin=#{login}&gbTime=#{gbTime}&gbToken=#{token}"
http = Net::HTTP.new(URI(url).host)

req Net::HTTP::Put.new(request)

res http.request(req)

print res.body

Python

Python code snippets should work with python version >= 2.7. The library “request” is not a part of the
Python Standard Library and probably must be installed separately (in Linux it should be available
through default package manager).

import requests
import hashlib
import time

send GET request with parameter

url = 'http://reg.test.genome.network/allele?hgvs="'

convert symbol > to special code %3E

url += requests.utils.quote("NC_000010.11:9.87894077C>T")
res = requests.get(url)

print(res.text)

send POST requests with parameter and payload taken from the file alleles.txt
url = 'http://reg.test.genome.network/alleles?file=hgvs'

res = requests.post(url, data=open('alleles.txt').read())

print(res.text)

calculate authentication parameters and send PUT request

you have to set login and password here

url = 'http://reg.test.genome.network/allele?hgvs=NC_000010.11:9g.87894077del'
identity = hashlib.shal((login + password).encode('utf-8"')).hexdigest()

gbTime = str(int(time.time()))

token = hashlib.shal((url + identity + gbTime).encode('utf-8')).hexdigest()
request = url + '&gbLogin=' + login + '&gbTime=' + gbTime + '&gbToken=' + token
res = requests.put(request)

print(res.text)

Authentication

While all HTTP GET and HTTP POST requests are accepted without authentication, active account in
Allele Registry is required for sending all HTTP PUT requests. Three special parameters must be added
to every request that needs an authentication:

1. gbLogin — user login

2. gbTime — current time saved as integer number of seconds since the Epoch

3. gbToken — special token calculated from original request URL, gbLogin, gbTime and user

password

The parameter gbToken is calculated in the following way:

SHA1 hex(url + SHAl hex(gbLogin + password) + gbTime)

where url is the original request (without gbLogin, gbTime and gbToken, if there is no parameters it
must have question mark at the end), operator + denotes simple string concatenation and SHA1_hex(...)
denotes hexadecimal representation of SHA1 calculated on given ASCII string.

In the section above there are sample code snippets which may be used for preparing a request with
authentication (variables url, login and password must be set in advance).

Error responses

All responses with status different than HTTP SUCCESS contain a body with a single JSON object
consisting of the following fields:

Name Type When returned? Description
errorType string always Error type, see the table below
description string always Description of error type given above
message string may be missing Detailed information about error

Returned error object may also contain some additional fields, depending on the errorType. The field
errorType always contains one of the short strings from the table below.

errorType description HTTP status

NotFound The system does not contain any data 404 (Not Found)
about requested resource.

AuthorizationError Access denied because of authorization |403 (Forbidden)
failure.

HgvsParsingError Given HGVS expressions cannot be 400 (Bad Request)
parsed. It is incorrect or not supported.

IncorrectHgvsPosition Position given in HGVS expression is 400 (Bad Request)
incorrect.

IncorrectReferenceAllele Given allele from reference sequence is |400 (Bad Request)
incorrect. It does not match actual
sequence at given position.

NoConsistentAlignment Given allele cannot be mapped in 400 (Bad Request)
consistent way to reference genome.

UnknownCDS The boundary of coding sequence for 400 (Bad Request)
given transcript is not known.

UnknownGene Given reference sequence is not 400 (Bad Request)
assigned to any gene.

UnknownReferenceSequence |Given reference sequence is not known. 400 (Bad Request)

VcfParsingError Sent VCF file cannot be parsed. It is 400 (Bad Request)
incorrect or contains unsupported
features.

InternalServerError Internal error occurred. Please, report it |500 (Internal Server Error)

dS an error.

Parameter set in HTTP header

All responses returned by Allele Registry have special parameter set in HTTP header:

e X-CAR-Version

It contains version of Allele Registry installed on the server. All official releases are denoted by three
numbers separated by dots (e.g. 0.08.06).

Objects exposed by this API

There are three main types of objects accessible through API and uniquely identified by the following
URIs:

* canonical alleles —http://{ServerName}/allele/{id}

* genes—http://{ServerName}/gene/{id}

» reference sequences — http://{ServerName}/refseq/{id}
HTTP request to object's URI returns HTTP NOT FOUND status if there is no object with a given URI
or HTTP OK status with JSON representation of the object in response's body. The formats of possible
responses are described in the following sections. All objects may contain some additional fields, not
described in the documentation below. No assumption should be made about these fields.

Canonical Allele

URL: http://{ServerName}/allele/{id}
The successful response contains exactly one object with the following fields.

Name Type When returned? Description

@id An allele URI always The URI of the allele.

type “nucleotide” or always The type of the allele.
“amino-acid”

activeUris An array of allele |if and only if the URI is inactive |The list of active allele
URIs URIs that superseded the

current one.

externalRecords |Object only if the URI is active and Known records from other
externalRecords |there are known links to similar |systems with the allele.
(see below) records in other systems

genomicAlleles | A non-empty array |only if the URI is active and A list of known definitions
of objects alleleType is set to “nucleotide”, |of the allele in the context
alleleDefinition omitted when empty of genomic reference
(see below) sequences.

transcriptAlleles | A non-empty array |only if the URI is active and the |A list of known definitions
of objects alleleType is set to “nucleotide”, |of the allele in the context
alleleDefinition omitted when empty of transcript reference
(see below) sequences.

aminoAcidAlleles | A non-empty array |if and only if the URI is active | A list of known definitions
of objects and the alleleType is set to of the allele in the context
alleleDefinition “amino-acid” of amino-acid reference
(see below) sequences.

externalRecords — object used in definition of canonical allele object above:

Name Type When Description
returned?
dbSNP An array of | Only if Objects contain the following fields:
objects non-empty * @id - link to record in dbSNP
* r1s—rs number from dbSNP
ClinVarAlleles An array of | Only if Objects contain the following fields:
objects non-empty * @id - link to Allele record in ClinVar
* alleleld
* preferredName
ClinVarVariations | An array of | Only if Objects contain the following fields:
objects non-empty * @id - link to Variation record in ClinVar
* variationld
* RCV - array of strings

alleleDefinition — object used in definition of canonical allele object above:

Name Type When returned? Description
hgvs An array of strings always Non-empty list of HGVS
expressions defining the allele in the
context of single reference sequence.
referenceSequence | A refseq URI always The URI of the reference sequence.
gene A gene URI If reference The URI of the gene assigned to the
sequence has reference sequence
assigned gene
coordinates A non-empty array of |always A list of subsequences of reference
objects coordinates sequence belonging to the allele
(see below)
referenceGenome |“NCBI36” or If and only if the | Value of this property is taken from
“GRCh37” or reference sequence | corresponding field in the reference
“GRCh38” linked above has | sequence object with the URI given
the same field above.
chromosome one of the strings: If and only if the | Value of this property is taken from

€1 «nH)» (13 »
17,927, ..., %227,
13 ¥» <« » <« 33
X7, “Y”, “MT

reference sequence
linked above has
the same field

corresponding field in the reference
sequence object with the URI given
above.

coordinates — object used in definition of allele object above:

Name Type When returned? Description
start A non-negative integer always Begin of a reference
subsequence covered
by allele.
end A non-negative integer always End of a reference
subsequence covered
by allele.
startIntronOffset A non-negative integer if and only if the reference | Distance (offset) of
sequence is transcript and | start position in an
the allele begins inside an |intron to the nearest
intron exon.
startIntronDirection | “+” or “-” if and only if the reference | Direction of the offset
sequence is transcript and | defined above.
the allele begins inside an
intron
endIntronOffset A non-negative integer if and only if the reference | Distance (offset) of
sequence is transcript and |end position in an
the allele ends inside an | intron to the nearest
intron exon.
endIntronDirection | “+” or “-” if and only if the reference | Direction of the offset
sequence is transcript and |defined above.
the allele ends inside an
intron
referenceAllele String consisting of letters: |always Original reference
‘A", 'C, 'G', 'T" for genomic subsequence defined
and transcript alleles or by the coordinates
sequence of protein symbols above.
for amino-acid alleles
allele String consisting of letters: |always Sequence put in place

'‘A','C, 'G', 'T" for genomic
and transcript alleles or
sequence of protein symbols
for amino-acid alleles

of reference
subsequence defined
above.

Example 1:

request: HTTP GET http://reg.test.genome.network/allele/CA012345

http://reg.test.genome.network/allele/CA012345

response:
{
"@context": "http://reg.test.genome.network/schema/allele.jsonld",
"@id": "http://reg.test.genome.network/allele/CA012345",
"type": "nucleotide",
"externalRecords": {
"dbSNP": [

"@id": "http://www.ncbi.nlm.nih.gov/snp/749469486",
"rs": 749469486
}
1

"ClinvarVariations": [

"@id": "http://www.ncbi.nlm.nih.gov/clinvar/variation/186550",
"variationId": 186550,
"RCV": ["RCV000166164"]

}

1,
"ClinvarAlleles": [

"@id": "http://www.ncbi.nlm.nih.gov/clinvar/?term=183678[alleleid]",
"alleleId": 183678,
"preferredName": "NM_000059.3(BRCA2):c.1543A>G (p.Thr515Ala)"

b
]
Iy

"genomicAlleles": [
{

"hgvs": ["NC_000013.11:g.32333021A>G"],

"referenceSequence": "http://reg.test.genome.network/refseq/RS542947913077",

"coordinates": [

{

"end": 32333021,
Ilallelell : IIGII,
"start": 32333020,
"referenceAllele": "A"

b
1,

"referenceGenome": "GRCh38",
"chromosome": "13"

}
1,
"transcriptAlleles": [

"coordinates": [
{
"end": 1770,
"allele": "G",
"start": 1769,
"referenceAllele": "A"

3

1,
"referenceSequence": "http://reg.test.genome.network/refseq/RS938330737581",

"gene": "http://reg.genome.network/gene/GN1101",
"hgvs": ["NM_000059.3:c.1543A>G", "LRG_293t1:c.1543A>G"]

Reference Sequence
URL: http://{ServerName}/refseq/{id}

Fields description:

“transcript”, may be
omitted

Name Type When returned? Description
@id A refseq URI always The URI of the reference sequence.
externalRecords | Object only if there are known |Known records from other systems
externalRecords |links to similar records |with the reference sequence.
in other systems
type “chromosome”or |always
“transcript” or
“amino-acid”
referenceGenome |“NCBI36” or if and only if the field | The genome build in which the
“GRCh37” or “type” is set to chromosomal reference sequence is
“GRCh38” “chromosome” referenced.
chromosome one of the strings: |if and only if the the
“17, 27, ..., “22”, | field “type” is set to
“X’J’ ‘(YJ’, “MT’J “Chromosome”
gene A gene URI only if the type is The URI of a gene associated with

this transcript reference sequence.

Example 1:

request: HTTP GET http:/reg.test.genome.network/refseq/RS000065

response:

{

"@context":
ll@idll :
Iltypell :

"externalRecords": {

"NCBI": {
Il@id n :
n ld n :
}
)

"referenceGenome":
"chromosome":

Example 2:

"GRCh38",
n 17 n

"http://reg.test.genome.network/schema/refseq.jsonld",
"http://reg.test.genome.network/refseq/RS000065",
"chromosome",

"http://www.ncbi.nlm.nih.gov/nuccore/NC_000017.11",
"NC_000017.11"

request: HTTP GET http:/reg.test.genome.network/refseq/RS011494

response:

"@context":
Il@id n :
Iltypell :

"http://reg.test.genome.network/schema/refseq.jsonld",
"http://reg.test.genome.network/refseq/RS011494",
"transcript",

http://reg.test.genome.network/refseq/RS011494
http://reg.test.genome.network/refseq/RS000065

"externalRecords": {
"LRG": {
Il@idll :
"http://ftp.ebi.ac.uk/pub/databases/1rgex/LRG_321.xml#transcripts_anchor",
"id": "LRG_321t6"

I
"NCBI":
"@id": "http://www.ncbi.nlm.nih.gov/nuccore/NM 001126116.1",
"id": '"NM_001126116.1"
}
3

"gene": "http://reg.test.genome.network/gene/GN11998"
}

Example 3:
request: HTTP GET http:/reg.test.genome.network/refseq/RS167707

response:
{
"@context": "http://reg.test.genome.network/schema/refseq.jsonld",
"@id": "http://reg.test.genome.network/refseq/RS167707",
"type": "amino-acid",
"externalRecords": {
"NCBI": {

"@id": "www.ncbi.nlm.nih.gov/nuccore/NP_001813.1",
"id": "NP_001813.1"

b
b
b

http://reg.test.genome.network/refseq/RS167707
http://www.ncbi.nlm.nih.gov/nuccore/NM_001126116.1

Gene

URL: http://{ServerName}/gene/{id}
Fields description:

Name Type When returned? Description

@id A gene URI always The URI of the gene.

externalRecords | Object only if there are known links to | Known records from other
externalRecords | similar records in other systems |systems with the gene.

names An array of if not empty A list of known gene's names
strings (labels) not mentioned in the

externalRecords.

Example:

request: HTTP GET http://reg.test.genome.network/gene/GIN11998

response:

{

"@context": "http://reg.test.genome.network/schema/gene.jsonld",

"@id": "http://reg.test.genome.network/gene/GN11998",
"externalRecords": {

"NCBI": {
"@id": "http://www.ncbi.nlm.nih.gov/gene/7157",
Ilidll : 11715711
3
"HGNC": {
"@id": "http://www.genenames.org/cgi-bin/gene_symbol_report?

hgnc_id=HGNC:11998",
"id": "HGNC:11998",
"symbol": "TP53",
"name": "tumor protein p53"

}
Y
"names": [
"LFS1",
Ilp53ll
]
}

http://reg.test.genome.network/gene/GN11998

Query or register an allele using HGVS expression

HGYVS is one of the standard notations for describing variants. Allele Registry allows for accessing and
registering alleles using HGVS expressions.

Query canonical allele by HGVS expression

Canonical allele can be queried by HGVS string with the following HTTP GET request:
http://{ServerName}/allele?hgvs={HGVS}

This query returns responses with single allele object. When given allele is not in the registry, the allele
object is also returned, but the field “@id” contains value "_:CA" instead of allele URI. In both cases
the status HTTP SUCCESS is returned.

Example:
request: HTTP GET http://reg.test.genome.network/allele?hgvs=NC 000010.11:2.87894077C>T
response: analogical like for an allele URI

Bulk query of alleles with file containing HGVS expressions

In case of many HGVS queries the efficiency can be improved by grouping many HGVS expressions
in single text file and sending it as a single HTTP POST request. The file content must be sent as a
payload and the HTTP POST request must have the following syntax:

http://{ServerName}/alleles?file=hgvs

As a result the request will return vector of canonical allele objects in the same order as occurrences of
corresponding HGVS expression in the file. In case of an error corresponding vector element is going
to contain an error object instead of canonical allele object. Occurrence of an error for given HGVS
expression does not influence the results of the others expressions.

(TODO — add example)

Bulk query of alleles with VCF file

Similar bulk query can be run for VCEF file. In this case the input file must be a valid VCF file and must
contain a ##contig parameter in the header for every chromosome id used in the file. Moreover each
##contig parameter should contain at least two fields named 'ID' and 'assembly'. In the current version
of Allele Registry the only allowed value of the field 'assembly' is 'GRCh38'. The file content must be
sent as a payload and the HTTP POST request must have the following syntax:

http://{ServerName}/alleles?file=vct
(TODO — add example)

http://reg.test.genome.network/allele?hgvs=NC_000010.11:g.87894077C%3ET

Register a new allele

Requests similar to those three described above can be used to register new alleles in Allele Registry. In
this case the following two modifications must be made:

* the type of request should be HTTP PUT instead of HTTP GET or HTTP POST

* authentication parameters must be added
This kind of request returns the same response as corresponding HTTP GET or HTTP POST one, the
only difference is that status HTTP NOT FOUND is never returned (new allele is added if not found in
the registry).

Example:
request: HTTP PUT http://reg.test.genome.network/allele?hgvs=NC 000010.11:2.87894077C>T
response — the same as in the corresponding example with HTTP GET

http://reg.test.genome.network/allele?hgvs=NC_000010.11:g.87894077C%3ET
http://reg.test.genome.network/allele?hgvs=NC_000010.11:g.87894077C

Queries

All correct queries return list of matching objects in response's body and status HTTP OK. If there is no
matching object, the response body contains empty list and the returned status is also HTTP OK (HTTP
NOT FOUND is not used in case of queries). The HTTP addresses for querying objects depend on the
object type:

* alleles— http://{ServerName}/alleles

e genes—http://{ServerName}/genes

* reference sequences — http://{ServerName}/refsegs
The type of query is defined by parameters added to the addresses above. All queries accept two special
optional parameters:

* skip — number of first records to skip (default 0)

* limit — maximal number of records to return (default is 100)
Alleles are always returned in order corresponding to their position on GRCh38 genome.
Allele Registry allows only for query types described below.

Query objects by their names

Each type of object can be queried by one of his known names. This type of query can be executed by
proper HTTP GET request with parameter “name”:

* alleles— http://{ServerName}/alleles?name={name}

* genes—http://{ServerName}/genes?name={name}

* reference sequences — http://{ServerName}/refseqgs?name={name}
Remember that any of these queries may return empty list (if not found) or list containing more than
one element (if the name is not unique). In all these cases the status HTTP OK is returned.

Example:
request: HTTP GET http://reg.test.genome.network/genes?name=TP53
response:
[
{
"@context": "http://reg.test.genome.network/schema/gene.jsonld",

"@id": "http://reg.test.genome.network/gene/GN11998",
"externalRecords": {
"NCBI": {
llidll : ll7157ll,
"@id": "http://www.ncbi.nlm.nih.gov/gene/7157"

4

"HGNC": {
"id": "HGNC:11998",
"symbol": "TP53",

"name": "tumor protein p53",
"@id": "http://www.genenames.org/cgi-bin/gene_symbol_report?
hgnc_id=HGNC:11998"
}
3
"names": [
"LFS1",

"p53"

http://reg.test.genome.network/genes?name=TP53

Query canonical alleles by reference sequence locus

This type of query can return list of alleles defined in the context of given reference sequence and lying
in particular region of this sequence. The simplest version of this query just returns all alleles defined
for given reference:

http://{ServerName}/alleles?refseg={name}

The region of interest can be specified by adding optional parameters “begin” and “end”:
http://{ServerName}/alleles?refseq={name}&begin={posl}&end={pos2}
Both “begin” and “end” parameters are optional and may be omitted. Missing “begin” parameter means
“beginning of the reference sequence”, similarly missing “end” parameter means “the end of the
reference sequence”.

Example:

request: HTTP GET

http://reg.test.genome.network/alleles?refseq=NM _000546.5&begin=290&end=295
response:

[

{
"uri": "http://reg.test.genome.network/allele/CA000479",

"type": "nucleotide",
"genomicAlleles": [

"referenceSequence":"http://reg.test.genome.network/refseq/RS896675939861",
"end": 7676390,
"start": 7676387

b
1,

"transcriptAlleles": [
{
"referenceSequence":"http://reg.test.genome.network/refseq/RS322512438994",
"end": 292,
"refAllele": "AAC",
"start": 289

"uri": "http://reg.test.genome.network/allele/CA000497",

"type": "nucleotide",

"genomicAlleles": [

{

"referenceSequence":"http://reg.test.genome.network/refseq/RS896675939861",
"end": 7676387,
"refAllele": "C",
"start": 7676386,
"allele": "T"

b
1,

"transcriptAlleles": [

http://reg.genome.network/alleles?refseq=NM_000546.5&begin=290&end=295
http://reg.test.genome.network/alleles?refseq=NM_000546.5&begin=290&end=295

"referenceSequence":"http://reg.test.genome.network/refseq/RS322512438994",
"end": 293,

"refAllele": "G",

"start": 292,

"allele": "A"

b
]
b
]

Query canonical alleles by genes
Alleles can be queried by genes they are connected to. The query is called by the following HTTP GET

request:
http://{ServerName}/alleles?gene={name}
It returns list of matched alleles.

(TODO - example)

Query canonical alleles by identifiers from external records

Alleles can be also queried by some identifiers copied from external systems, like dbSNP rs number or
ClinVar variation identifier. This kind of query has the following format:
http://{ServerName}/alleles? {fieldName}={value}

Supported values of {fieldName} are shown in the table below:

Field Name example
ClinvVar.variationId .../alleles?ClinvVar.variationId=186550
ClinvVar.alleleld .../alleles?ClinvVar.alleleId=186550
ClinVar.RCV .../alleles?ClinVar .RCV=RCV000168487
dbSNP.rs .../alleles?dbSNP.rs=786204261

(TODO — examples)

	Bash 2
	Ruby 3
	Python 3
	Introduction
	Sending HTTP requests
	Bash
	Ruby
	Python

	Authentication
	Error responses
	Parameter set in HTTP header

	Objects exposed by this API
	Canonical Allele
	Reference Sequence
	Gene

	Query or register an allele using HGVS expression
	Query canonical allele by HGVS expression
	Bulk query of alleles with file containing HGVS expressions
	Bulk query of alleles with VCF file
	Register a new allele

	Queries
	Query objects by their names
	Query canonical alleles by reference sequence locus
	Query canonical alleles by genes
	Query canonical alleles by identifiers from external records

